

Université Saint-Joseph Faculté d'Ingénierie

École supérieure d'ingénieurs de Beyrouth (ESIB)

« Master Oil and Gas : Exploration, Production and Management » « Master Pétrole et Gaz : Exploration, Production et Management» الماستر في استكشاف و انتاج و ادار ة البتر و ل و الغاز

Upstream and Downstream : Engineering and Management

(M P O G)

With the participation of « Institut Français du Pétrole (**IFP School**) »

In partnership with **TOTAL**

and with the support of

Attock Cil International DMCC

Schlumberger

September 2015 (Updated 25 of june 2015)

For more informations :

Dean M. Fadi GEARA

Faculté d'Ingénierie - ESIB, Université Saint Joseph (USJ) Mar Roukos, Mkalles, LIBAN Tél : +961 1 421312 – Fax : +961 4 532651 email : fadi.geara@usj.edu.lb

GENERAL INFORMATIONS

Based on the preliminary investigations on offshore oil and gas in Lebanon, as well as the expertise of international experts and exploratory mission reports,

Based on the Lebanese new law on oil and gas,

Based on the impact of this industry on the Lebanese economy,

Based on the absence of similar or equivalent program in Oil and Gas in Lebanon

Based on the consequences of such program on creating new jobs and boosting of several local productive sectors,

Based on the urgent need for engineers and specialists in Oil and Gas in Lebanon.

The « École supérieure d'ingénieurs de Beyrouth (ESIB) » took the initiative to contact their partners, in particular the « Institut Français du Pétrole (IFP School) » and TOTAL, as well as European and Arab institutions to implement a pioneering program in Lebanon on "Oil and Gas" in its two components: Technical and Economical, or Upstream and Downstream.

SCIENTIFIC AND EDUCATIONAL PURPOSE

The dual objective of this program is to train:

1 - Experts in Reservoir Engineering (Upstream) :

This program trains professionals in petroleum engineering with a focus on reservoir engineering.

As reservoir engineers, they are able to describe the reservoir and to understand its behavior through data acquisition, interpretation and integration considering: rock characterization, fluids characterization and fluid flow in porous media.

Consequently, they contribute, in collaboration with geoscientists, to evaluate volumes of hydrocarbons in place and they state on the natural production mechanisms.

Starting from the understanding of the reservoir, they propose an economically optimized development strategy of hydrocarbon fields and they evaluate the associated reserves and production profile. To do so, they are able to use tools such as dynamic reservoir simulation.

They highlight uncertainties and their impacts on the evaluation of field performances.

They are able to describe drilling activities, well performances and surface facilities for processing and transportation of oil and gas.

Security and environmental issues are also of their concern. They identify the main risks associated to operations and the risk mitigation options.

2- Experts in Petroleum Economics and Management (Downstream):

This program trains also experts to study the market structure and price mechanism: Changes in market structure, strategy of exporting countries and its impact on prices, global demand and the rise of emerging countries (Brazil, Russia, China, India, etc..), speculation and its impact on the price of oil in short term, the outlook for the coming years, economic recovery and rising of oil prices, the risk, competitive environment and arrival of new entrants and new aggressive strategies, behaviors of petroleum countries, competitors and different business practices, security of supply, regional and international legal aspects, the economic growth, transportation costs, etc.

GENERAL ORGANIZATION OF THE MASTER

The "Master Oil and Gas" comprises 120 credits, spread over four semesters of 30 credits each.

This program includes:

- Theoretical and practical courses
- Projects and/or internships leading to the preparation of a training report.

Since the Master, is intended primarily for engineers (Bac +5), or 5th year students of engineering ESIB (Bac +4) or graduates of Master of science (Bac +5), candidates eligible to enroll, based on their academic record, could be <u>exempted</u> from a part of the courses.

ORGANIZATION OF PROJETS AND INTERNSHIPS

Projects and internships (training) and other applied work will be held either in Lebanon or abroad, in an oil company or an oil or gas fields. Their purpose is to apply knowledge and skills to study the implementation and feasibility of an oil or gas field (for the projects), and to apply knowledge and skills in the real onshore or offshore field or in a petroleum company (for training).

The scientific responsibility of projects and training is provided by the Master faculty (Teachers).

This work aims to help students to develop and improve the required skills:

- in the Technical field of Oil & Gas reservoirs (Upstream)
- in the Oil and Gas Economy and Markets (Downstream).

They are the subject of a written report and a public presentation. The rating reflects three elements:

- student global behavior during the training,
- content and quality of written report
- oral presentation and defense.

MANAGEMENT AND SCIENTIFIC AND EDUCATIONAL COOPERATION

This program is based on the principle of scientific cooperation between several academic and professional institutions (ESIB, IFP School, TOTAL, Attock Oil International DMCC, Kappa, LOGS, etc.). Courses are provided at ESIB School of engineering, Mar Roukos.

The bodies of the Master Oil and Gas are:

- The Chairman;
- The Coordinator;
- The Monitoring Committee ESIB and IFP School (CS).
- As well as TOTAL ; other collaborations or partnerships are also considered.

The Chairman

The Director of ESIB School provides the management and the responsibility for the proper conduct of the Master. He is in charge of:

• The implementation of administrative, academic and financial issues of the program.

- Setting the lists of enrolled students and graduates;
- Signing the diplomas.
- Assigning the jury for projects and internships.
- Proposing relationships with international university partners and the industrial and professional sector;
- Defining policies and scientific guidance of the "Oil and Gas" sector and propose priorities of the Master program.

The coordinator

The coordinator of the Master (teacher from ESIB) is appointed by the Director of ESIB for one academic year, renewable. He is responsible of:

- The coordination of the academic program;
- Developing and ensuring the application of the rules for the Master and conducting the program;
- Ensuring the needed contacts for the trainees, evaluation of training programs, and allocation of supervisors and trainees;

The Monitoring Committee: ESIB and IFP School (CS).

The Monitoring Committee (CS) consists of the Directors of the two institutions (ESIB and IFP School) or their representatives; CS may involve members of the public or private sector in the Master to assist him.

The CS will meet at least once a year, in Lebanon or in France.

The CS is especially in charge of:

• Approving the missions of IFP School professors and the budget granted by the ESIB for these missions, and the modes of payment;

• Giving an advisory opinion on the composition of the teaching staff and courses repartition;

RECRUITEMENT

Are allowed to present their files:

- Graduate engineers in Electrical Engineering, Mechanical, Civil, Chemical, Oil, or other equivalent or compatible with previous disciplines.
- Holders of a Master degree in Mathematics, Physics, Chemistry, Mechanical, Electrical and Power or other disciplines equivalent or compatible with previous ones,
- Students in the fifth year of ESIB.

The selection of candidates is made by a jury of admission and depends of the maximum number of available places. The admission committee will determine for each student validated courses based on his previous curriculum and define the courses to attend in the Master program, including sometime additional prerequisite courses.

THE DEGREE

The Master degree MPOG will be issued by **ESIB** <u>under the seal of the Université Saint-Joseph de Beyrouth</u>.

It validates a program, which ESIB, with the academic involvement of IFP School (France), provide, through collaboration, their educational and scientific means.

It receives financial and educational assistance of several local and international organizations, including the Embassy of France in Lebanon, TOTAL and Attock Oil International DMCC.

The Degree "Master Oil and Gas: Exploration, Production and Management" is awarded to candidates who passed all courses exams as well as projects and training, as defined by the rules of the Degree.

RULES OF THE DEGREE

1. Teaching languages.

Due to the regional and international outlook and the requirements of the oil market, the program will be given mainly in English but also in French and Arabic.

2. Test of knowledge

The "Master Oil and Gas: Exploration, Production and Management" is awarded to candidates who have passed the courses exams on their theoretical and practical issues and show a sufficient level in the defense of projects and training report.

3. Attendance

Attendance in all educational activities is required in accordance with rules of ESIB.

4. Validation conditions

To each course, project or internship is assigned a note over 20.

A general average is calculated from the notes of courses and project, weighted by the number of credits.

The courses are validated if:

- a. The general average is greater than or equal to 12/20, and
- b. Notes of all the courses are higher than 08/20.

Projects and internships are validated if each note is greater than or equal to 12/20.

A 2nd session of exams is applied to all non-validated credits according to the rules of ESIB

Priority in the choice of internships is based on the average before the 2nd session.

5. Master Degree.

When candidate validate all his credits, his studies are sanctioned by delivering the Master Degree:

« Master Oil and Gas: Exploration, Production and Management »

الماستر في استكشاف وانتاج وادارة البترول والغاز

The following grades are given:

- 12/20 to 13.99 / 20 : Good Enough
- 14/20 to 15.99 / 20 : Good
- From 16/20 : Very Good

CONDITIONS OF ENTRY

Admissions are based on file study and evaluation. The file must include:

- A photo with the name of the candidate on the reverse.
- Individual extract of family status
- Curriculum Vitae of the candidate
- Certified copies of previous degrees including Baccalaureate
- Certified copies of records obtained in previous University studies.
- Copies of certificates of previous professional work experience of the candidate.
- Letter certifying the mastering of the English language.

(1) - The candidate is required to submit the original documents the day of registration.

Entries will be controlled by the coordinator of MPOG, and presented to the Director of ESIB who establishes a list of admitted candidates to the program. Applicants may be subject to an interview before final admission.

PROGRAM FEES

<u>As a guideline</u>, for the academic year 2013-2014, the cost of credit was equivalent to \$ 175. The amount of the tuition is paid in many payments. No refund will be made in case of dropout. TOTAL or USJ Scholarships could be given to the most motivated candidates with very good files presented.

DISTRIBUTION OF COURSES

<u>As a guideline</u>, the following distribution is proposed for the semesters MR2, MR3 and MR4. It should be noted that semester MR1 (4-5 months) represents technical or economical courses taken and validated previously:

Distribution of courses	Proposed period	
6 months Exploration and Production (Upstream)	Sontombor 2015 to July 2016	
5 months Economics and Management (Downstream)	September 2013 to July 2016	
5-6 months of project and/or training and report	August to January 2016	
	15-16 months	

The duration of the program is 15 to 16 months

DISTRIBUTION OF COURSES

By theme, courses are grouped according to the tables below.

<u>1- Petroleum Exploration and Production (Upstream) (60 ECTS)</u></u>

Code	Course	Vol	ТРС	ECTS
020MAOGM1	Mathematics for engineers (M. Salim SALEM – ESIB)	40	20	6
020BPOGM1	Basics of probability and statistics (M. Rafic FADDOUL – ESIB)	18	12	3
020THOGM1	Thermodynamics (M. Marwan BROUCHE et M. Sami YOUSSEF – ESIB)	24	16	4
020GEOGM1	Geology (M. Muhsin RAHHAL – ESIB)	18	12	3
020AMOGM1	Advanced mechanics (M. Fouad KADDAH et M. Fadi GEARA – ESIB)	40	20	6
020FMOGM1	Fluid mechanics (M. Wajdi NAJEM et M. Sélim CATAFAGO – ESIB)	40	20	6
020LPOGM2	Linear programming for planning and optimization (M. Rafic FADDOUL - ESIB)	18	12	3
020ASOGM2	Applied Statistics and Probability (M. Rafic FADDOUL - ESIB)	18	12	3
020PGOGM2	Petroleum geology and Geophysics – Exploration and seismic methods (M. Muhsin RAHHAL - ESIB)	32	18	4
020FROGM2	Fundamentals of reservoir engineering (M. Alain AURIAULT - IFP)	24	6	3
020DWOGM3	Drilling/Well Completion/Well performance (Mme Isabelle REY-FABRET - IFP)	36	6	4
020WLOGM3	Well logging/Well testing – Interpretation (M. Vladimir Alejandro Choque FLORES - IFP)	30	6	3
020PMOGM3	Production mechanisms – Field development, methodology (M. Alain AURIAULT - IFP)	24	6	2
020RSOGM3	Reservoir simulation – Field development project (Mme Maria AGUILERA - IFP)	48	12	4
020SFOGM3	Surface facilities (M. Julien GUILLET-LHERMITE- IFP)	24	6	2
020GFOGM3	Gas field (M. Etienne MOREAU - IFP)	24	6	2
	T O T A L (648 hours)	458	190	58

2- Petroleum Economics and Management (Downstream) (30 ECTS)

Code	Course	Vol	ТРС	ECTS
020MIOGM1	Microeconomics (M. Joseph GEMAYEL et Mme Racquel ANTOUN NAKHLE - FSE)	12	8	2
020DSOGM2	Decision sciences (M. Rafic FADDOUL - ESIB)	18	12	3
020BAOGM2	Business accounting (M. Jamil ARIDA - FGM)	18	12	3
020MEOGM2	Managerial Economics (M. Alfred RIASHY)	12	8	2
020CAOGM2	Credit analysis and credit risk management (M. Nizar ATRISSI - FGM)	18	12	3
020POOGM2	Petroleum Economics and Geopolitics (M. Naji ABI AAD - ESIB)	18	12	3

Master Oil and Gas (MPOG) de l'ESIB,

020FMOGM2	Financial markets – Options – Swap – Hedgings – Strategies – Derivatives (Mme Alice TABET - FSE)	18	12	3
020LFOGM3	Legal and fiscal aspects (Upstream and Downstream) (Mme Lara BOUSTANY - FDSP- Arabe)	18	12	3
020SMOGM3	Strategic management (M. Camille ASSAF – FGM)	12	8	2
020UMOGM3	Upstream management (M. Gilles DARMOIS - IFP)	24	6	3
020PGOGM3	Overview of Crude Markets – Pricing game (Jihad EL HOKAYEM)	18	6	2
020TSOGM3	Trade, shipping & Project finance; banking type and instruments (M. Salem MOUNZER – ESIB)	18	12	3
	T O T A L (324 hours)	204	120	32

<u>3- Training and report (30 ECTS)</u>

Code	Course	Vol	TPC	ECTS
020TROGM4	Training and/or project and report (4-6 months - M. Nasser HOTEIT et M. Fadi GEARA - ESIB)	0	750	30
	T O T A L (750 hours)	0	750	30

In brief

A total of 1,600 hours and 120 ECTS for all disciplines (courses, TD, TP, TPC, Project, Training), distributed as follows:

1 - Technical skills: Exploration and Production (Upstream): 58 EC2 - Financial skills : Economics, Management, Commodities, Markets (Downstream): 32 EC3 - Training and report: 30 EC	ion and Production (Upstream) : 58 ECTS ics, Management, Commodities, Markets (Downstream) : 32 ECTS : 30 ECTS
--	--

TOTAL $\overline{120 \text{ ECTS}}$

Detailed content of the Master

PETROLEUM EXPLORATION AND PRODUCTION (UPSTREAM)

Code	Course	Vol	ECTS
	Petroleum Exploration and Production (Upstream)		
	(58 ECTS)		
020MAOGM1	Mathematics for engineers: (M. Salim SALEM)	60	6
	Special functions: gamma, beta, integral cosine, integral sine, error		
	function, Bessel function - orthogonal polynomials - Integral		
	Transforms (Laplace and Fourier) - Complex Functions:		
	continuity, derivatives - Lebesgue integral: Introduction to the		
	Theory of Measurement, the Lebesgue integral (difference with		
	Riemann integral) - Theory of distribution: Definition, general		
	properties, derivatives, Dirac distribution, convolution, Laplace		
	and Fourier integral transforms, applications - the Hilbert		
	transform (transformation Z). arbitrary interval - functions with		
	several variables.		
	PDEs. Applications On Matlab		
020BPOGM1	Basics of probability and statistics : (M. Rafic FADDOUL)	30	3
	Modeling - equiprobability - Combinatorial Analysis - Bertrand		
	Paradox - Conditional Probability - Independence - Random		
	variables - distribution function - Hope - Moments - Variance -		
	standard discrete Laws - Function generator - Act probability of a		
	random couple - marginal Laws - Random Variables actual		
	density - characteristic function - Change of variables - Law real-		
	usual Inequalities - Convergences - central limit theorem - Vector		

	Gaussian-Simulation-sampling - Estimation - Tests of Hypotheses.		
020THOGM1	Thermodynamics: (M. Marwan BROUCHE et M. Sami	40	4
	YOUSSEF)		
	I hermodynamics: Fundamentals of thermodynamic - microscopic		
	approach of the Ideal gas – real gas - condensed phase - Elements		
	of fluid statics - first principle of thermodynamics, energy		
	Datances of gas systems - Second principle of Thermodynamics, Dhase transitions of pure body, thermal machines. Heat transfer		
	conduction and thermal conviction thermal radiation		
020GEOGM1	Conduction and thermal conviction - thermal radiation.	20	2
020GEOGMII	Chapter 1: The Clobe	50	3
	Chapter 1: The Olobe Chapter 2: Minerals and Rocks		
	Chapter 2: External Geodynamics internal Geodynamics		
	Chapter 4: Historical Geology		
	Chapter 5: Structural Geology		
	Chapter 6: Manning and geological interpretation		
	Chapter 7: Applied Geophysics		
	Chapter 8: Oil Prospecting		
020AMOGM1	Advanced mechanics: (M Found KADDAH et M Fadi GEARA)	60	6
02011010 00011	Chapter 1: Overview of the mechanics of deformable bodies	00	Ū
	Chapter 2: Kinematics of deformable bodies		
	Chapter 3: Dynamics of deformable bodies		
	Chapter 4. Thermodynamics of deformable bodies and behavior		
	laws		
	Chapter 5: Methods for calculating in linear elastic and isotropic		
	Chapter 6: Variational principles in solid mechanics		
	Chapter 7: Finite Element Method		
020FMOGM1	Fluid mechanics: (M. Wajdi NAJEM et M. Sélim CATAFAGO)	60	6
	Valasity field in a fluid local mass concernation equation		
	velocity field in a fluid - local mass conservation equation		
	consequences – the perfect fluid dynamics - applications of		
	consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid		
	consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous		
	consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows		
	consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes		
020LPOGM2	 velocity field in a fund - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic 	30	3
020LPOGM2	 velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) 	30	3
020LPOGM2	 velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, 	30	3
020LPOGM2	 Velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. 	30	3
020LPOGM2	 Velocity field in a fund - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. 	30	3
020LPOGM2	 Velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. 	30	3
020LPOGM2	 velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. 	30	3
020LPOGM2	 velocity field in a fulld - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. 	30	3
020LPOGM2	 Velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates 	30	3
020LPOGM2	 Velocity field in a full - focal mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. 	30	3
020LPOGM2	 Velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded 	30	3
020LPOGM2	 Velocity field in a fulld - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. 	30	3
020LPOGM2	 Velocity field in a full - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point 	30	3
020LPOGM2	 Velocity field in a fluid - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. 	30	3
020LPOGM2 020ASOGM2	 Velocity heid in a hund - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. 	30 30	3
020LPOGM2 020ASOGM2	 Velocity heid in a hund - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. 	30 30 30	3
020LPOGM2 020ASOGM2	 Velocity field in a field - local mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. Applied Statistics and Probability (:M. Rafic FADDOUL): 1-Probability basics 2-Random variables A picarato method identification (Dimensical distribution) 	30 30 30	3
020LPOGM2 020ASOGM2	 velocity field in a fluid - focal mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. Applied Statistics and Probability (:M. Rafic FADDOUL): 1-Probability basics 2-Random variables 3-Discrete probability distribution (Binomial distribution) 4 Contineous probability distribution (Binomial distribution)	30 30 30	3
020LPOGM2 020ASOGM2	 velocity field in a fluid - focal mass conservation equation consequences – the perfect fluid dynamics - applications of Bernoulli's theorem – Continuum environment - Fluid characteristics - Kinematics - balance equations - Study of viscous fluids - dimensional analysis and similarity - flows - laminar flows and turbulent flows in pipes Linear programming for planning and optimization (M. Rafic FADDOUL) Introduction to linear programming; definition of the problem, graphic resolution. General formulation of a linear program, basis, canonical form. Resolution by the tableau method / by the simplex method. Duality, relationship between primal and dual. Formulation of a minimization problem, finding an initial basis. Economic interpretation of results: marginal costs, marginal rates of substitution, etc. Specific cases: degeneracy, equality constraints, bounded variables. Resolution algorithms: revised simplex method, interior point methods. Applied Statistics and Probability (:M. Rafic FADDOUL): 1-Probability basics 2-Random variables 3-Discrete probability distribution (Binomial distribution) 4-Continous probability distribution (Standard Normal distribution) 	30 30 30	3

	5-Descriptive statistics/Inferential statistics		
	6-Confidence Intervals: discrete and continuous variables		
	7-Hypothesis Testing: discrete and continuous variables		
	8-Introduction to Single/Multiple Regression		
	9-Introduction to Neural Networks		
020PGOGM2	Petroleum geology and Geophysics – Exploration and seismic	50	4
0201 00 0112	methods (M Muhsin RAHHAL).	20	
	Principles of petroleum geology		
	Exploration and Geophysical Methods: Passive (gravity magnetic		
	electromagnetics) active (seismic reflection)		
	Theory / Principles: Locate or detect the presence of subsurface		
	structures or bodies and determine their size, shape, depth, and		
	physical properties (density, velocity, porosity) + fluid content		
	Sedimentary Basins		
	Extensional sedimentary Basins		
	Introduction to Basins analysis		
	Seismic Signature of Extensional sedimentary Basins		
020FROGM2	Fundamentals of reservoir engineering (M. Alain AURIAULT -	30	3
	IFP):		
	Petrophysics		
	PVT		
	Fluid Flow in porous media		
	OOIP calculation		
020DWOGM3	Drilling/Well Completion/Well performance (Mme Isabelle	42	4
	REY-FABRET - IFP):		
	Drilling principles and drilling architecture		
	Completion equipment/design, operations		
	Perforations/Sand control, formation damage and well stimulation		
	Fluid flows in pipes and well performance		
020WLOGM3	Well logging/Well testing – Interpretation (M. Vladimir	36	3
	Alejandro Choque FLORES - IFP):		
	Overview/purpose and design of well testing		
	Main data acquisition and interpretation procedures		
	Overview/purpose of well logging		
	Tools, data acquisition and interpretations	•	
020PMOGM3	Production mechanisms – Field development, methodology (M.	30	2
	Alain AURIAULT - IFP):		
	Multiphase flow		
	Natural depletion and material balance		
	EOD		
	EUK Deserves concents and Field development		
020PSOGM2	Reserveir simulation Field development project (Mmc Maria	60	1
020KS00WI3	A GUILERA - IEP).	00	4
	Introduction and workflow		
	Input data and production curve		
	History matching and predictions		
	Field development project		
020SFOGM3	Surface facilities (M. Julien GUILLET-LHERMITE - IFP)	30	2
	Description of the effluent feeding the process unit, and		_
	description of the products stored at the end of the treatments		
	. Principles of oil, gas and water treatments, from the separation to		
	the storage		
	. Equipment related to these treatments (description, pro and cons)		

	. Remark: The case of gas field will be more detailed.		
020GFOGM3	Gas field (M. Etienne MOREAU - IFP):	30	2
	. Specificity of gas condensate field (PVT, Pressure evolution)		
	. Well testing methods		
	. Field case example		
	. Gas field development project (reservoir approach)		
	TOTAL (648 hours)	648	58

PETROLEUM ECONOMY AND MANAGEMENT (Downstream)

Code	Course	Vol	ECTS
	Petroleum Economy and Management (Downstream)		
	(32 ECTS)		
020MIOGM1	Microeconomics (M. Joseph GEMAYEL et Mme Racquel	20	2
	ANTOUN NAKHLE):		
	Section 1: Preferences, Utilities and Demands		
	Chapter 1: Consumers and their preferences		
	Chapter 2: Utilities- Indifference Curves		
	Chapter 3: Demand and Behavior in Markets		
	Section 2: Production and Cost		
	Chapter 4: Production and its Technology		
	Chapter 5: Cost and Choice		
	Chapter 6: Cost Curves		
	Section 3: Markets and Market Structures		
	Chapter 7: Perfectly Competitive Markets		
	Chapter 8: Monopoly		
	Chapter 9: Natural Monopoly and the Economics of Regulation		
	Chapter 10: Oligopoly		
020DSOGM2	Decision sciences (M. Rafic FADDOUL - ESIB):	30	3
	Risk management,		
	Decision making under uncertainty,		
	Statistics and forecasting,		
	Operations research,		
	Negotiation and auction analysis, and		
	Behavioral decision theory		
020BAOGM2	Business accounting (M. Jamil ARIDA):	30	3
	Balance sheet, Income Statement and Notes		
	The generally accepted accounting principles (GAAP); case of oil		
	and gas companies, I.F.R.S. and FASB		
	Consolidated Accounts		
	Financial Analysis: financial equilibrium and profitability,		
	working capital, operating working capital, cash position		
	Statement of Cash Flows		
	Stock Exchange, Market Value, Price Earning Ratio		
	Financing Plan		
	Cash Flow Planning		
	Introduction to cost accounting and management control.		
020MEOGM2	Managerial economics (M. Alfred RIASHY):	20	2
020CAOGM2	Credit analysis and credit risk management (M. Nizar	30	3
	ATRISSI):		

	Defining and measuring credit risk parameters		
	Credit analysis and credit rating		
	Credit portfolio models and limitations		
	Risk analysis and management		
020000000	Creat derivatives and structured finance	20	2
020P00GM2	February Economics and Geopolitics (M. Naji ABI AAD):	30	3
	Economics. This course shall cover advanced topics in both on		
	(crude and petroleum products) and natural gas economics with a		
	clear distinction between these two energy sources. It is to offer		
	in-depth analyses of topics such as supply and demand, formation		
	and forecast of prices, investment in oil and gas fields and		
	infrastructure, the economics of transporting oil and that of natural		
	gas (as piped or liquefied gas-LNG), as well as that related to the		
	end-use of crude oil, petroleum products, and natural gas in all its		
	assortment. The course is also to focus on international oil and gas		
	policy issues with special emphasis on the role of regional and		
	international energy institutions such as the Organization of the		
	Detroloum Exporting Countries (OPEC) and that of the Forum of		
	Cos Exporting Countries (ECEC) and that of the Forum of		
	Gas Exporting Countries (FGEC).		
	Geopolitics: This course is to provide an in-depth and updated		
	grasp of key regional and international geopolitical issues that		
	affect in a way or another the global oil and gas industry,		
	including, among others, the rise of resource nationalism in many		
	producing countries, the various sources of instability that are		
	actually shaking or eventually putting in danger several exporting		
	nations, the dependence of oil and gas consumers on unstable and		
	unsteady sources of supply, the numerous factors of interstate		
	conflicts that put at risk different producing states, and emerging		
	geopolitical realities resulted from the strong coming on stream of		
	new unconventional oil and gas production (shale gas tight gas		
	new, unconventional off and gas production (shale gas, tight gas,		
		20	2
020FMOGM2	Financial markets – Options – Swap – Hedging – Derivatives	30	3
	(MIME AIICE TABET): Overview of Eineneiel Merkets and Derivetives		
	Eutures contracts and Forward contracts in Oil and Gas		
	Markets Speculation Hedging Strategies Forward Prices		
	Ontions: Characteristics Strategies Pricing Risk		
	Management European Options American Options Asian Options		
	and other Exotic Options		
	Energy Swaps: Characteristics, Hedging Strategies, Valuation		
	Commodity Caps/Floors, Collar		
	Swing contracts in Gas Market		
020LFOGM3	Legal and fiscal aspects (Upstream and Downstream) (Mme	30	3
	Lara BOUSTANY - Arabe):		
	Lebanese petroleum law		
	Law and fiscality	•	
020SMOGM3	Strategic management (M. Camille ASSAF):	20	2
	1 What is Strategy?		
	2 Analyzing the problem		
1	1 > IVIOLEIS OF NITHERV	1	1

	~		
	Shipping operations.		
	Storage of oil products – Optimization.		
	pipelines / by rail / by trucks / by ships.		
	Logistics And Transportation: Oil products transportation by		
	Oil Trader: Applied and practical aspects of oil trading.		
	Instruments (M. Salem MOUNZER and Attock team):		
020TSOGM3	Trade, shipping & Project finance; banking type and	30	3
	HOKAYEM):	20	
020PGOGM3	Overview of crude markets – Pricing game (M. Jihad EL	24	2
	Performances versus predictions. Performance improvement		
	Tools of choice for ranking and selection.		
	Portfolio inventories.		
	Prospect and play analysis. Reserve estimation.		
	Field size distributions.		
	Use of log normality in dealing with natural parameters.		
	Summary of petroleum systems and risk qualifiers.		
	history.		
	Project evaluation and decision-making. Risk assessment. Case		
	trends: "frontiers", technology, gas specificity.		
	Strategies/ Portfolio Management: Upstream strategies. future		
	Shallow interest method.		
	capital rationing.		
	Investment and financing mix: overall and equity return and		
	money/constant money.		
	NPV. IRR. Taking inflation into account: current		
	Fiscal impact: depreciation rate and profitability / after tax		
	nav out time		
	Criteria: net present value (NPV) / internal rate of return (IRR) /		
	rate		
	Capital Budgeting: Introduction: cash flow schedule / discount		
	evercises and spreadsheets		
	reduction sharing contracts / service contracts with many		
	a development costs, booked reserves, etc.		
	investments and costs, finding		
	Investments and Costs. Accounting and Performance Measures:		
	Oil Reserves		
	challenges, players: IOC, NOC, Independents, Contractors		
	Upstream Economics: Key figures in upstream, the main		
020UMOGM3	Upstream management (M. Gilles DARMOIS - IFP):	30	3
	7 Strategy & Leadership		
	6 Implementing Changes in Structure		
	5 Developing Strategies		
	4 Strategic Assessment		

TRAINING AND REPORT

PROGRAMME du MR4

Code	Course	Vol	ECTS
	Training and/or project and report		
	(30 ECTS)		
020TROGM4	Training and/or project and report (5-6 months - M. Nasser		
	HOTEIT et M. Fadi GEARA - ESIB):		
	5-6 months of training and/or project with a final report in an Oil	750	30
	and Gas Company or in an Oil or Gas field (Onshore or		
	Offshore)		
	T O T A L (750 hours)	750	30

« Oil and Gas : Exploration, Production and Management » (MPOG)

Course	Professor	Degree			
1- Petroleum Exploration and Production (Upstream) (58 ECTS)					
Mathematics for engineers	M. Salim SALEM	PhD			
Basics of probability and statistics	M. Rafic FADDOUL	PhD			
Thermodynamics	M. Marwan BROUCHE M. Sami YOUSSEF	PhD PhD			
Geology	M. Muhsin RAHHAL	PhD			
Advanced mechanics	M. Fouad KADDAH M. Fadi GEARA	PhD PhD			
Fluid mechanics	M. Wajdi NAJEM M. Sélim CATAFAGO	PhD PhD			
Linear programming for planning and optimization	M. Rafic FADDOUL	PhD			
Applied Statistics and Probability	M. Rafic FADDOUL	PhD			
Petroleum geology and Geophysics – Exploration and seismic methods	M. Muhsin RAHHAL	PhD			
Fundamentals of reservoir engineering	M. Alain AURIAULT	IFP School			
Drilling/Well Completion/Well performance	Mme Isabelle REY- FABRET	IFP School			
Well logging/Well testing – Interpretation	M. Vladimir Alejandro Choque FLORES	IFP School			
Production mechanisms – Field development, methodology	M. Alain AURIAULT	IFP School			
Reservoir simulation – Field development project	Mme Maria AGUILERA	IFP School			
Surface facilities	M. Julien GUILLET- LHERMITE	IFP School			
Gas field	M. Etienne MOREAU	IFP School			
2- Petroleum Economy and N	anagement (Downstream)) (32 ECTS)			
Microeconomics	M. Joseph GEMAYEL Mme Racquel ANTOUN NAKHLE	PhD PhD			
Decision sciences	M. Rafic FADDOUL	PhD			
Business accounting	M. Jamil ARIDA	PhD			
Managerial Economics	M. Alfred RIASHY	PhD			
Credit analysis and credit risk management	M. Nizar ATRISSI	PhD			
Petroleum economics and geopolitics	M. Naji ABI AAD	PhD			
Financial markets – Options – Swap – Hedging – Derivatives	Mme Alice TABET	Master-Eng			
Legal and fiscal aspects	Mme Lara BOUSTANY	PhD			

Master Oil and Gas (MPOG) de l'ESIB,

Strategic management	M. Camille ASSAF	PhD	
Upstream management	M. Gilles DARMOIS	IFP School	
Overview of crude markets – Pricing game	M. Jihad EL HOKAYEM	Master	
Trade, shipping & Project finance; banking type and instruments	M. Salem MOUNZER	Electrical Engineer ESIB Petroleum Economics IFP – Master Economy Attock Oil Int. DMCC	

For more informations:

Dean M. Fadi GEARA

Faculté d'Ingénierie - ESIB, Université Saint Joseph (USJ) Campus des Sciences et technologies (CST) Mar Roukos, Mkalles, LIBAN

Tel : +961 1 421312 - Fax : +961 4 532651

email : <u>fadi.geara@usj.edu.lb</u> website : <u>www.fi.usj.edu.lb</u>