Discrete Mathematics

- 1. Course number and name: 020MADCI1 Discrete Mathematics
- **2.** Credits and contact hours: 6 ECTS credits, 3x1:15 contact hours
- 3. Name of course coordinator: Guilnard Sadaka
- 4. Instructional materials:

Textbook:

- Mathématiques tout-en-un MPSI, R. Mansuy, Vuibert
- Maths, MPSI MP2I, J-M. Monier, G. Haberer, Dunod
- Supplemental material : pdf course

5. Specific course information

a. Catalog description:

Logic and reasoning, Set theory, Applications, Binary relations, Algebraic calculations, Complex numbers, Integer arithmetic, Polynomials.

- **b. Prerequisites:** None
- c. Required/Selected Elective/Open Elective: Required
- 6. Educational objectives for the course
 - a. Specific outcomes of instruction:
 - Analyze and solve logical problems.
 - Understand, read, and write a mathematical proposition using quantifiers.
 - Know common logical reasoning.
 - Reason well and write clear proofs and problem solutions.
 - Manipulate applications and recognize their properties: identify an injective, surjective, and bijective function, determine the inverse of a bijection, find the direct image and inverse image of a set under a function...
 - Distinguish an equivalence relation as well as the quotient set.
 - Recognize an ordered set and determine its remarkable elements.
 - Calculate sums and products.
 - Use the binomial theorem.
 - Manipulate complex numbers and their algebraic and geometric properties.
 - Solve algebraic equations of degree 2.
 - Determine the nth roots of a complex number.
 - Master the concept of divisibility and its resulting properties.
 - Know how to characterize a prime number with respect to Bézout's theorem.
 - Calculate a greatest common divisor (GCD) and a Bézout's relation.
 - Use prime factorization.
 - Manipulate congruence notation and solve congruence equations.

- Perform division of two polynomials.
- Calculate the GCD of polynomials.
- Understand the relationship between GCD and roots.
- Exploit the relations between the coefficients and roots of a polynomial.
- Factorize a polynomial into irreducible factors over the field of real numbers or the field of complex numbers.

b. PI addressed by the course:

PI	1.1
Covered	X
Assessed	X

7. Brief list of topics to be covered

- Logic
- Reasoning
- Set theory
- Applications
- Binary relations
- Algebraic calculations
- Complex numbers
- Integer arithmetic
- Polynomials