
Compiler Principles 

 
1. Course number and name: 020PCOES4 Compiler Principles 

 

2. Credits and contact hours: 4 credits, 2x1:15 contact hours (course + lab) 

 

3. Name(s) of instructor(s) or course coordinator(s): Maroun Chamoun 

 

4. Instructional materials: Handouts posted on the Web 

 

5. Specific course information 

a. Catalog description: 

Introduction to compilers – Lexical analysis: A language for specifying lexical 

analyzers, Finite automata, Design of a lexical analyzer generator, LEX tool. 

Algebraic grammar and pushdown automata - Syntax analysis: Top-down parsing 

and LL parsers, Bottom-up parsing and LR parsers, Parser generators and YACC 

tool – Semantic analysis: Syntax-directed definitions, Bottom-up evaluation, Top-

down translation – Intermediate code generation: Three-address code, code 

optimization. 

 

b. Prerequisites: None 

 

c. Required for CCE Software Engineering option students; Selected Elective for 

CCE Telecommunication Networks option students  

 

6. Educational objectives for the course  

The primary goal of this course is to develop an understanding of the operation of compilers 

and the development and specification of computer-based languages. The course pulls 

together threads from underlying theory, most notably from logic and from data structures 

and algorithms, and builds on these a practical exercise in which students create a compiler 

of their own using commonly available compiler development tools. 

a. Specific outcomes of instruction:  

− Develop the notion of programming: data structures and advanced algorithms. 

− Become familiar with the development and maintenance of complex software. 

− Understand the compilation process and know how to implement the elements 

of compilation (lexical analysis, syntactic analysis) as well as operational 

semantics, interpreter and abstract machine. 

− Apply concepts of formal languages and finite-state machines to the translation 

of computer languages. 

− Identify the compiler techniques, methods, and tools that are applicable to other 

software applications. 

− Describe the challenges and state-of-the-practice of compiler theory and 

practice. 



− Use compilation techniques to adapt a given language to a particular application 

as a data processing tool. 

− Approach and use a new programming language. 

− Implement a compiler for a simple language. 

 
b. PI addressed by the course: 

 

PI 1.1 1.2 6.1 

Covered x x x 

Assessed    

 

7. Topics and approximate lecture hours: 

− Language translators: compilers and interpreters. Bootstrapping a compiler. The 

structure of a compiler: lexical analysis, parsing, semantic analysis, intermediate code 

generation, register allocation, global optimization. (2 Lectures) 

− Lexical scanning: Token classes, keyword recognition, minimizing the code-per-

character cost of scanning, scanning numeric literals and string literals. The interface 

between the scanner and the parser. Formalism: regular grammars, regular languages, 

Finite State Automata (FSA), automatic generation of lexical scanners. Hand-written 

vs. automatically generated scanners. Lex. (4 Lectures) 

− Lab: Lexical scanning using Deterministic FSA. Introduction to Lex. Lexical scanning 

with Lex (3:45 hours) 

− Parsing. Abstract syntax vs. concrete syntax. Grammars and the formal specification of 

certain aspects of programming languages. Top-down parsing and recursive descent. 

Automatic parser construction. FIRST and FOLLOW functions. LL(1) parsers. 

Bottom-up parsing through LR parsers. Conflicts in LR grammars and how to resolve 

them. SLR, LR(k), and LALR parsers. Yacc (7 Lectures) 

− Lab: Parsing manually using LL parser. Automatic Parsing with Yacc (3:45 hours).   

− Semantic analysis: attributes and their computation, tree-traversals, visibility and name 

resolution. Inherited attributes and symbol tables. Name resolution in block-structured 

languages. Type checking. Type systems, varieties of strong typing, overload 

resolution, polymorphism and dynamic dispatching. Type-checking and type inference, 

unification. (3 Lectures) 

− Intermediate code generation: control structures, expressions, simple register 

allocation. Aggregates and other high-level constructs. (2 Lectures) 

− Optimization: data flow analysis, Single-Assignment form. (1 Lectures) 

− Lab: Writing a simple preprocessor using Lex and Yacc. (3:45 hours) 

 

 


