Compiler Principles

Course number and name: 020PCOES4 Compiler Principles

Credits and contact hours: 4 ECTS credits, 2x1:15 contact hours (course + lab)

. Name(s) of instructor(s) or course coordinator(s): Maroun Chamoun

. Instructional materials: Handouts posted on the Web

Specific course information

a.

Catalog description:

Introduction to compilers — Lexical analysis: A language for specifying lexical
analyzers, Finite automata, Design of a lexical analyzer generator, LEX tool.
Algebraic grammar and pushdown automata - Syntax analysis: Top-down parsing
and LL parsers, Bottom-up parsing and LR parsers, Parser generators and YACC
tool — Semantic analysis: Syntax-directed definitions, Bottom-up evaluation, Top-
down translation — Intermediate code generation: Three-address code, code
optimization.

Prerequisites: None

Required for CCE Software Engineering option students; Selected Elective for
CCE Telecommunication Networks option students

. Educational objectives for the course

The primary goal of this course is to develop an understanding of the operation of compilers
and the development and specification of computer-based languages. The course pulls
together threads from underlying theory, most notably from logic and from data structures
and algorithms, and builds on these a practical exercise in which students create a compiler
of their own using commonly available compiler development tools.

a.

Specific outcomes of instruction:

— Develop the notion of programming: data structures and advanced algorithms.

— Become familiar with the development and maintenance of complex software.

— Understand the compilation process and know how to implement the elements
of compilation (lexical analysis, syntactic analysis) as well as operational
semantics, interpreter and abstract machine.

— Apply concepts of formal languages and finite-state machines to the translation
of computer languages.

— Identify the compiler techniques, methods, and tools that are applicable to other
software applications.

— Describe the challenges and state-of-the-practice of compiler theory and
practice.



— Use compilation techniques to adapt a given language to a particular application
as a data processing tool.

— Approach and use a new programming language.
— Implement a compiler for a simple language.

b. PI addressed by the course:

Pl 1.1 1.2 1.3 2.1
Covered X X X X
Assessed X X

Topics and approximate lecture hours:

Language translators: compilers and interpreters. Bootstrapping a compiler. The
structure of a compiler: lexical analysis, parsing, semantic analysis, intermediate code
generation, register allocation, global optimization. (2 Lectures)

Lexical scanning: Token classes, keyword recognition, minimizing the code-per-
character cost of scanning, scanning numeric literals and string literals. The interface
between the scanner and the parser. Formalism: regular grammars, regular languages,
Finite State Automata (FSA), automatic generation of lexical scanners. Hand-written
vs. automatically generated scanners. Lex. (4 Lectures)

Lab: Lexical scanning using Deterministic FSA. Introduction to Lex. Lexical scanning
with Lex (3:45 hours)

Parsing. Abstract syntax vs. concrete syntax. Grammars and the formal specification of
certain aspects of programming languages. Top-down parsing and recursive descent.
Automatic parser construction. FIRST and FOLLOW functions. LL(1) parsers.
Bottom-up parsing through LR parsers. Conflicts in LR grammars and how to resolve
them. SLR, LR(k), and LALR parsers. Yacc (7 Lectures)

Lab: Parsing manually using LL parser. Automatic Parsing with Yacc (3:45 hours).
Semantic analysis: attributes and their computation, tree-traversals, visibility and name
resolution. Inherited attributes and symbol tables. Name resolution in block-structured
languages. Type checking. Type systems, varieties of strong typing, overload
resolution, polymorphism and dynamic dispatching. Type-checking and type inference,
unification. (3 Lectures)

Intermediate code generation: control structures, expressions, simple register
allocation. Aggregates and other high-level constructs. (2 Lectures)

Optimization: data flow analysis, Single-Assignment form. (1 Lecture)

Lab: Writing a simple preprocessor using Lex and Yacc. (3:45 hours)



