Internet of Things Technologies

- 1. Course number and name: 020IDOES5 Internet of Things Technologies
- 2. Credits and contact hours: 4 ECTS credits, 2x1:15 contact hours
- 3. Instructor's or course coordinator's name: Melhem El Helou Juliana El Rayess
- **4. Instructional materials:** Course handouts and tutorials, lab experiments, standards and white papers

5. Specific course information

a. Catalog description:

IoT reference model – End-to-end IoT chain – Constraints and challenges of connected devices – Hardware architecture of connected devices – Wireless LAN (IEEE 802.11, IEEE 802.15.4, BLE, ZigBee) – Low power long range networks (LoRa, Sigfox, NB-IoT) – Application layer (MQTT, XMPP, COAP) – IoT network design – hands-on and deployment of end-to-end IoT chain

- **b. Prerequisites:** 020INRES1 Introduction to Data Networks
- **c. Selected Elective** for CCE students

6. Specific goals for the course

a. Specific outcomes of instruction:

Analyze the constraints of connected objects in terms of energy, computation capability, transmission, and security.

Compare medium access control protocols in IoT.

Design IoT networks.

Design and deploy a real prototype of an end-to-end IoT chain.

Analyze and compare the performance of an IoT network using a simulation tool.

b. PI addressed by the course:

PI	1.1	1.2	1.3	2.1	2.2	2.3	2.5	3.2	4.2	5.1	6.1	6.2	6.3	6.4	7.1
Covered	X	X	X	X	X	X	X		X		X	X			
Assessed	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

7. Topics and approximate lecture hours:

- Introduction to the Internet of Things (1 lecture)
- Hardware architecture of connected objects (1 lecture)
- Challenges of connected objects (energy, security, computation capability, transmission interface) (1 lecture)
- Wireless LAN (IEEE 802.11, IEEE 802.15.4, BLE, ZigBee) (3 lectures)
- Low power long range networks LPWAN (LoRa, Sigfox, NB-IoT) (6 lectures)
- Activity on LoRa performance evaluation (1 lecture)
- Group activity on LoRaWAN performance evaluation (2 lectures)
- Application layer (MQTT, XMPP, COAP) (1 lecture)
- IoT network design: coverage planning and capacity planning (2 lectures)
- Design and deployment of end-to-end IoT chain (3 lectures)
- Performance evaluation of the deployed network (3 lectures)