Course Syllabus

- 1. Course number and name: 020IF2CI3 Programming 2
- 2. Credits and contact hours: 4 ECTS credits, 3 x1:15 course hours.
- 3. Instructor's or course coordinator's name: Tony Nicolas
- 4. Text book, title, author, and year: Option Informatique, R. Mansauy, Vuibert 2014
 - a. other supplemental materials: Professor textbook and course material
- 5. Specific course information
 - a. catalog description:

Programming and algorithms with Categorical Abstract Machine Language (CAML) – Array – List – LIFO and FIFO structures - Tree – Sorting algorithms– Temporal complexity - deterministic and non-deterministic finite state automata – regular Expressions - propositional logic.

- b. prerequisites:
- c. Required/Elective/Selected Elective: Required
- 6. Specific goals for the course
 - a. Specific outcomes of instruction:
 - Explain and write the code for the basic sorting algorithms with CAML
 - Analyze and calculate time complexity of sorting algorithms.
 - Write recursive code.
 - Analyze and write the code for recursive sorting algorithms using recursive functions
 - Analyze and write recursive code for binary tree
 - Manipulate regular expression
 - Construct automata to recognize given language
 - Evaluate logical expressions
 - b. KPIs addressed by the course.

KPI	c2	k2
Covered	Х	Х
Assessed	Х	Х
Give Feedback	Х	Х

- 7. Topics and approximate lecture hours :
 - CAML (4 Lectures)
 - Array and iterative algorithms, FIFO LIFO (4 Lectures)
 - Time complexity and asymptotic analysis of an algorithm (2 Lectures)
 - Bubble sort : algorithm and time complexity (1 Lecture)
 - Selection sort : algorithm and time complexity (1 Lecture)
 - Simple and binary insertion sort: algorithms and time complexity (1 Lecture)
 - Recursive algorithms: concept and examples (2 Lectures)
 - Merge sort : algorithm and time complexity (1 Lecture)
 - Quick sort : algorithm and time complexity (1 Lecture)
 - Lists : constructions and recursive algorithms, LIFO- FIFO (6 Lectures)
 - Binary tree (5 Lectures)
 - Heap sort (1 Lecture).
 - Deterministic and non-deterministic finite state automata regular Expression automata and language recognition (10 Lectures).
 - Propositional logic (3 Lectures)