Course Syllabus

- 1. Course number and name: 020CIFNI4 Fluid Kinematics
- 2. Credits and contact hours: 2 ECTS credits, 1×1 : 15 course hours
- 3. Instructor's or course coordinator's name: Hagop TAWIDIAN
- **4.** Textbook: *Physique tout-en-un PC, Salamito, J'intègre-Dunod, 2013*
- **5.** Specific course information

Catalog description:

Flow visualization, lines of flow, Types of flow- steady, unsteady, uniform, non-uniform, laminar, turbulent, velocity field and acceleration, continuity equation, Navier-Stokes equation, Equation of streamline, stream function, velocity potential function, circulation, flow net, Vorticity, irrotational and rotational flow, compressible and incompressible flows, Lagrangian and Eulerian Description.

- **a.** prerequisites: Hydrostatics
- **b.** Required/Elective/Selected Elective: Required
- **6.** Specific goals for the course specific outcomes of instruction
 - Understand the type of flows
 - Explain the Lagrangian and Eulerian perspectives to fluid flow problems
 - Review and understand the continuity equations for viscous, incompressible fluids.
 - Understand vorticity and circulation concepts and theorems.
 - Understand and utilize approximate solutions of the Navier-Stokes equation.
 - Calculate the motion of a fluid particle (kinematics) including translation (particle acceleration), rotation (vorticity), angular deformation (proportional to shear stress), and linear deformation (volume dilation rate).
 - **b.** KPIs addressed by the course:

KPI	a1	a2	b1	b2	b3
Covered	X		X		
Assessed	X				
Give Feedback	X				

- 7. Topics and approximate lecture hours:
 - Type of flows (2 Lecture)
 - Continuity equation, Navier-Stokes equation, Equation of streamline (3 Lectures)
 - Stream function, velocity potential function, circulation, flow net (3 Lectures)
 - Vorticity, irrotational and rotational flow, compressible and incompressible flows (3 Lectures)
 - Lagrangian and Eulerian Description. (3 Lectures)