Course Syllabus

- 1. Course number and name: 020AL1CI2 Algebra 1.
- 2. Credits and contact hours : 8 ECTS credits, 4x1:15 course hours
- 3. Instructor's or course coordinator's name : Fares Maalouf
- 4. Text book: Xavier OUDOT: Maths MP/MP*. Vuibert.
- 5. Specific course information
 - i. Catalog description: Algebraic structures, vector spaces, linear span, linear subspaces, affine spaces, bases, sums of subspaces, linear forms, finite dimensional spaces, matrices, linear maps and their matrix representation, rank of a matrix, symmetric groups, determinants, Euclidian spaces.
 - ii. Prerequisites: None
 - iii. Required : Yes
- 6. Specific goals for the course
 - a. Specific outcomes of instruction
 - Identify linear problems, and represent them with vector spaces and linear maps.
 - Define the notion of dimension.
 - Manipulate matrices and linear systems.
 - Represent linear maps with matrices.
 - Identify the solutions of a linear system of equations.
 - Identify alternating multilinear forms, and compute determinants.
 - Orthonormalize a basis in a Euclidian space.
 - Classify isometries in the Euclidian oriented plane.
 - b. KPIs addressed by the course.

RAP (KPI)	a1
Covered	Х
Assessed	Х
Give Feedback	Х

- 7. Topics and approximate lecture hours :
 - Algebraic structures: groups, rings, fields. (4 Lectures)
 - Vector spaces, linear subspaces, linear span. (3 Lectures)
 - Direct sums of linear subspaces. (2 Lectures)
 - Linear maps, kernel and image, projections, symmetries and homotheties. (4 Lectures)
 - Linear independence, bases. (2 Lectures)
 - Finite dimensional vector spaces, dimension, dimension theorems for vector spaces. (4 Lectures)
 - Rank of a family of vectors, linear maps in finite dimension, rank-nullity theorem, hyperplanes. (4 Lectures)
 - Matrices: basic properties, algebraic operations. (5 Lectures)
 - Matrix equivalence, matrix similarity. (3 Lectures)
 - Echelon form for linear systems of equations. (3 Lectures)
 - Symmetric group, permutations, cycles signatures. (2 Lectures)
 - Alternating multilinear forms, determinants. (4 Lectures)
 - Methods for computing determinants, Cramer formulas. (3 Lectures)
 - Euclidian spaces, inner product, Cauchy-Schwartz inequality. (3 Lectures)
 - Orthogonality, orthonormal bases, Gram-Schmidt process. (3 Lectures)
 - Isometries in Euclidean spaces, orthogonal matrices. (3 Lectures)
 - Supplementary exercices. (4 Lectures)