Course Syllabus

020HSOGS5 Groundwater Hydraulics

- 1. Course number and name: 020HSOGS5 Groundwater Hydraulics
- 2. Credits and contact hours: 4 credits, 2x1:30 course hours
- 3. Instructor's or course coordinator's name: Adel ABOU JAOUDE
- 4. Textbook and other supplemental material:
 - **a.** Freeze, R. A., and J. A. Cherry (1979), *Groundwater*, edited, New Jersey, Prentice-Hall Inc., TIC, Englewood
 - **b.** de Marsily, G. (1986), *Quantitative Hydrogeology*, Academic Press Inc., Orlando, Florida. (also available in French: http://www.sisyphe.upmc.fr/~m2hh/hydr/marsily/gdm-hydrogeologie.pdf)
 - c. Instructor's Class Notes

5. Specific course information

- **a. Catalog description:** Provide the necessary elements to: quantify the groundwater flow in confined and unconfined aquifers; estimate the rates of seepage under dam structures; design and dimensioning of drills; interpret pumping tests; quantify solute and pollutant transport in simple configurations.
- **b.** Prerequisites: None.
- **c.** Required/Elective/Selected Elective: Required major course for Water and Environment Specialty students

6. Specific goals for the course

- a. Specific outcomes of instruction:
 - Introduce the students to the concepts of groundwater hydraulics and resources management
 - Develop the theoretical background needed for analyzing groundwater flow and seepage
 - Present students the needed methods to interpret pumping tests
 - Expose students to field drilling methods
 - Familiarize students with numerical methods and groundwater modeling
 - Introduce the students to basic theory of pollutant transport in porous media
 - Enhance the students' writing and oral presentation skills

b. KPIs addressed by the course:

KPI	a1	a2	c3	e3	g1	k1	k3
Covered	X	X	X	X	X	X	X
Assessed							
Give Feedback							

7. Brief list of topics to be covered and approximate number of lectures:

- 1. Introduction (2 hours)
- 2. Darcy's law (2 hours)
- 3. Groundwater flow (8 hours)
- 4. Groundwater flow modeling (6 hours)
- 5. Field drilling methods (2 hours)
- 6. Pumping well hydraulics (8 hours)
- 7. Pollutant transport (2 hours)