
Software Engineering

1. Course number and name: 020GLOES5 Software Engineering

2. Credits and contact hours: 4 ECTS credits, 35 contact hours (lectures + labs)

3. Instructor’s or course coordinator’s name: Rima Kilany

4. Text book:

a. Other supplemental materials:
Handouts and course material posted on the Web

5. Specific course information

a. Catalog description:

This course describes the problems related to programming in the Large vs

programming in the Small, at the level of cost, quality, functionalities and time

management. It explains the methodologies related to the project development life

cycle according to sturdy approaches, such as CMM, TSP or PSP, as well as

according to agile methodologies such as RUP, XP, Scrum, and RAD. It details

elicitation techniques and software Requirement Specification writing rules and

templates, as well as it describes many specification tools used for analysis.

It explains advanced object-oriented design concepts (OCP, LSP, etc…), and

covers all the diagrams of UML, which is used as a modeling language. It also

explains de CRC Card design method adopted by the eXtreme Programming

methodology.

It demonstrates the need for continuous refactoring and explains refactoring

techniques at a chirurgical, tactical and strategic level. It also describes the process

to follow in order to succeed, starting by configuring and using configuration

management and versioning tools, as well as testing and bug management software,

then, by proceeding to quantitative and qualitative analysis in order to find eligible

refactoring candidates and finally by executing and validating the refactoring step.

This course also details testing at the unit/integration/functional and non-functional

levels.

It exposes methods that can be used to estimate the cost of developing a software.

It explains UI/UX to-do and not-do basics by studying the different cases of

standalone, web and accessible applications.

b. Prerequisites or co-requisites:

c. Required: Elective for CCE students; required for CCE software engineering

option students

6. Specific goals for the course

a. The student will be able to:

- Understand the requirements and constraints of Programming in the Large

- Choose a suitable methodology/life cycle and personalize a process in order to

adapt to the nature of the solution to implement, and succeed in respecting cost,

time, quality and required functionalities constraints.

- Write suitable Software Requirement Specification, after the analysis and

identification of client needs by choosing the most appropriate elicitation and

specification techniques.

- Design a solution at a high level and a detailed level in an object-oriented

context and use UML as a modeling language.

- Use the appropriate methodology and tools to refactor and/or maintain a project

solution, in order to fix or prevent bugs or to enhance software quality, such as

versioning tools, testing and bug management tools.

- Analyze software quantitatively (code metrics) and qualitatively (search for

anti-patterns, code inspection) as a step in software refactoring process.

- Do Unit Testing, integration, functional and non-functional testing.

- Estimate the cost of a development.

- Evaluate UI/UX design for standalone, web and accessible applications.

b. KPI:

7. Brief list of topics to be covered

Lecture Description

1
Introduction to software engineering: requirements and

constraints of programming in the Large

2 Activities of the development process

3-4 Software Life cycles and methodologies: Sturdy vs Agile.

5 eXtreme Programming agile methodology

6 Elicitation: artefacts and techniques

7
Software Requirement Specification tools, techniques and writing

rules and templates.

8-9

Object Oriented Software Design- CRC Cards- Advanced

Object-oriented design concepts- Implementation best practices

and conventions.

10
Refactoring: levels, process, versioning, testing and bugs

management environments.

11
Qualitative analysis (code inspection, architecture review, anti-

patterns)

12 Quantitative analysis (metrics)

13 Refactoring: a practical example

14 Software Testing: Difficulties, classification

KPI a1 a2 b3 c1 c2 c3 e1 e2 e3 f1 g1 g2 j1 k2 k3

Covered x x x x x x x x x x x x x x x

Assessed x x x x x x x x x x x x

15
Testing at all the life cycle levels (Unit, Integration, functional,

and non-functional)

16 Estimation of a software development cost

17 UI design: Evolution, Elements

18 UI design: Web, and Accessibility

19 UI/UX design: User experience evaluation

20 Modeling with UML

21-22 UML: Static view

23-24 UML: Dynamic view

25-28 Lab: UML hands-on for a real life use-case.

